Network Intrusion Detection based on GMKL Algorithm

نویسندگان

  • Yuxiang Li
  • Haiming Wang
  • Hongkui Yu
  • Changquan Ren
  • Qingjia Geng
چکیده

According to the 31th statistical reports of China Internet network information center (CNNIC), by the end of December 2012, the number of Chinese netizens has reached 564 million, and the scale of mobile Internet users also reached 420 million. But when the network brings great convenience to people's life, it also brings huge threat in the life of people. So through collecting and analyzing the information in the computer system or network we can detect any possible behaviors that can damage the availability, integrity and confidentiality of the computer resource, and make timely treatment to these behaviors which have important research significance to improve the operation environment of network and network service. At present, the Neural Network, Support Vector machine (SVM) and Hidden Markov Model, Fuzzy inference and Genetic Algorithms are introduced into the research of network intrusion detection, trying to build a healthy and secure network operation environment. But most of these algorithms are based on the total sample and it also hypothesizes that the number of the sample is infinity. But in the field of network intrusion the collected data often cannot meet the above requirements. It often shows high latitudes, variability and small sample characteristics. For these data using traditional machine learning methods are hard to get ideal results. In view of this, this paper proposed a Generalized Multi-Kernel Learning method to applied to network intrusion detection. The Generalized Multi-Kernel Learning method can be well applied to large scale sample data, dimension complex, containing a large number of heterogeneous information and so on. The experimental results show that applying GMKL to network attack detection has high classification precision and low abnormal practical precision.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

BeeID: intrusion detection in AODV-based MANETs using artificial Bee colony and negative selection algorithms

Mobile ad hoc networks (MANETs) are multi-hop wireless networks of mobile nodes constructed dynamically without the use of any fixed network infrastructure. Due to inherent characteristics of these networks, malicious nodes can easily disrupt the routing process. A traditional approach to detect such malicious network activities is to build a profile of the normal network traffic, and then iden...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural Network

    The article attempts to have neural network and genetic algorithm techniques present a model for classification on dataset. The goal is design model can the subject acted a firewall in network and this model with compound optimized algorithms create reliability and accuracy and reduce error rate couse of this is article use feedback neural network and compared to previous methods increase a...

متن کامل

A New Method for Intrusion Detection Using Genetic Algorithm and Neural network

Abstract— In order to provide complete security in a computer system and to prevent intrusion, intrusion detection systems (IDS) are required to detect if an attacker crosses the firewall, antivirus, and other security devices. Data and options to deal with it. In this paper, we are trying to provide a model for combining types of attacks on public data using combined methods of genetic algorit...

متن کامل

A Hybrid Framework for Building an Efficient Incremental Intrusion Detection System

In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JNW

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013